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Summary

A high-order Collocation Penalty via Reconstruction (CPR) computational fluid dynamics
code that solves the compressible Euler equations equations was applied to the problem of
vortex transport by a uniform flow to test the method’s capability to preserve vorticity in
an unsteady inviscid flow. The third-order explicit Runge-Kutta scheme of Shu and Osher
[1] is used to advance the simulation in time.

1 Code Description

The conservation laws are discretized by the correction procedure via reconstruction (CPR)
scheme with DG correction functions. The divergence of the inviscid fluxes are determined
either through a chain rule or Lagrange polynomial approach. The Roe flux is employed as
the common interface flux. The solver is parallelized using MPI via Open MPI, version 1.4.3
where grid partitioning is achieved through ParMETIS. Post-processing was performed with
Tecplot 360.

1.1 Computations

The Guillimin cluster of the McGill high performance computing (MHPC) infrastructure,
part of the Compute Canada HPC network, served for the computations, using the sw
architecture. Machine specifications and Taubench results are presented in Tables 1 and 2.

Machine name Specifications
MHPC-(sw) Dual Intel Westmere EP Xeon X5650

(6-core, 2.66 GHz, 12MB Cache, 95W)

Table 1: Computer specifications

Machine name Taubench CPU times
MHPC-(sw) 9.5 (s)

Table 2: Taubench results
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2 Case Summary

The following two vortex flow conditions were specified with velocity and temperature per-
turbations given in the case description:

Slow Vortex
M∞ = 0.05 β = 0.02 R = 0.005

Fast Vortex
M∞ = 0.5 β = 0.2 R = 0.005

Time period, T Lx

Uinf

Final time 50T

Residual tolerances or other convergence criteria:
Simulation run until 50T.

Polynomial Mesh Size # procs
P2 16 x 16 12

32 x 32 24
64 x 64 48

128 x 128 48
P3 16 x 16 24

32 x 32 48
64 x 64 72

128 x 128 96
P4 16 x 16 36

32 x 32 60
64 x 64 96

Table 3: Number of machines used
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3 Meshes

Meshes used were quad meshes provided on the 3rd higher order workshop website. For the
uniform grids, the meshes provided were used without modification. For the perturbed
grids, the boundary nodes were adjusted such that the periodic nodes had the same x and
y coordinates; node coordinates on the left and bottom were used to modify node
coordinates on the right and top of the grid. The number of DOF/element was (P + 1)2.

Domain size (periodic square):
0, 0 ≤ x, y ≤ Lx, Ly;Lx = Ly = 0.1

4 Results

Only the slow vortex case was run.

4.1 Slow vortex

Time-step sensitivity studies were performed on the finest grids used for polynomial orders
P2 to P4 on the uniform meshes; halving the time-step used on each resulted in a change of
less than 0.016 % in all cases, running for the entire simulation time of 50 periods. As the
computations to validate this time-step quickly become more expensive as the mesh is
refined or polynomial order is increased, no time-step study was done for the perturbed
meshes. Instead, time-step values used were half of those used for the uniform mesh. The
assumption that the change in the error would remain insignificant is reliant on the fact
that the perturbation of each node was less than or equal to 15 % of h.

Plots of integrated L2 error norms for u, v and
√
u2 + v2 are shown below along with tables

showing convergence rates.
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TauBench Work Units
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Figure 1: Integrated L2 Norm of u-Velocity Error - Uniform Meshes
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Figure 2: Integrated L2 Norm of u-Velocity Error - Perturbed Meshes
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TauBench Work Units
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Figure 3: Integrated L2 Norm of v-Velocity Error - Uniform Meshes
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Figure 4: Integrated L2 Norm of v-Velocity Error - Perturbed Meshes
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TauBench Work Units
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Figure 5: Integrated L2 Norm of
√
u2 + v2-Velocity Error - Uniform Meshes
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Figure 6: Integrated L2 Norm of
√
u2 + v2-Velocity Error - Perturbed Meshes
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L2 Error Order

Polynomial Mesh Size U V
√
U2 + V 2 U V

√
U2 + V 2

P2 16 x 16 1.68e-03 1.72e-03 2.40e-03 - - -
32 x 32 7.94e-04 6.76e-04 1.04e-03 1.08 1.34 1.20
64 x 64 8.34e-05 8.58e-05 1.20e-04 3.25 2.98 3.12

128 x 128 9.07e-06 4.40e-06 1.01e-05 3.20 4.29 3.57
P3 16 x 16 8.67e-04 7.89e-04 1.17e-03 - - -

32 x 32 2.60e-05 2.55e-05 3.64e-05 5.06 4.95 5.01
64 x 64 1.27e-06 2.14e-07 1.29e-06 4.35 6.89 4.82

128 x 128 7.66e-08 5.87e-09 7.68e-08 4.05 5.19 4.07
P4 16 x 16 4.80e-05 4.81e-05 6.79e-05 - - -

32 x 32 1.10e-06 3.78e-07 1.17e-06 5.44 6.99 5.86
64 x 64 6.26e-08 4.68e-09 6.28e-08 4.14 6.34 4.22

Table 4: Errors and convergence orders - uniform meshes

L2 Error Order

Polynomial Mesh Size U V
√
U2 + V 2 U V

√
U2 + V 2

P2 16 x 16 1.73e-03 1.76e-03 2.47e-03 - - -
32 x 32 8.57e-04 7.19e-04 1.12e-03 1.02 1.29 1.14
64 x 64 8.57e-05 8.94e-05 1.24e-04 3.32 3.01 3.18

128 x 128 2.28e-05 8.87e-06 2.45e-05 1.91 3.33 2.34
P3 16 x 16 8.68e-04 7.88e-04 1.17e-03 - - -

32 x 32 3.07e-05 3.15e-05 4.40e-05 4.82 4.65 4.74
64 x 64 1.10e-06 5.90e-07 1.25e-06 4.80 5.74 5.14

128 x 128 1.41e-07 8.69e-08 1.66e-07 2.96 2.76 2.91
P4 16 x 16 6.30e-05 6.75e-05 9.23e-05 - - -

32 x 32 1.65e-06 9.16e-07 1.89e-06 5.25 6.20 5.61
64 x 64 8.55e-08 1.91e-08 8.76e-08 4.27 5.59 4.43

Table 5: Errors and convergence orders - perturbed meshes
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